The authors of the article give an example of the implementation of this algorithm in C with a pre-trained classifier for face detection. Recently, an implementation of the PICO algorithm in JS has appeared, but it does not implement the invariance of turning the image (or tilting the head to the left/right). This is the shortcoming I decided to fix.
To implement the rotation invariance, it is necessary to run the algorithm several times for the image rotated at several angles. But since the algorithm works with pixels, and not an integral image, you can not perform a resource-intensive image rotation operation, but simply read the desired pixels using a rotation matrix.
The revision included:
implementation of invariance to turn;
re-trained classifier of persons;
a more productive method for converting the RGBA image to grayscale;
When the task appears to transmit some code by audio, the classic solution is DTMF codes. DTMF is a two-tone multi-frequency signal used to dial a phone number. However, the actual application of this technology is much wider.
The signal format is the sum of two sinusoidal signals of certain frequencies. DTMF symbols are encoded by the following frequencies:
The problem with the TL-WR841N router (v9 in my case) is that there’s only 4MB of flash memory and after the OpenWRT firmware, there’s only about 300KB left for personal use, which is not enough to install OpenVPN. The solution to this problem is in the post OpenWrt + VPNclient for a router with 4mb ROM, but several years have passed and scripts require changes.
In the tasks of automatic processing of images of faces, the question of finding and normalizing (aligning) the image of a face in a photo or video stream often arises. Alignment usually involves rotating, zooming, and cropping the part of the photo of interest. On the web, you can find examples for implementing this function in Python or C/C++ using the OpenCV computer vision library. Here I will give two examples of the implementation of this function in JavaScript for NodeJS and for running in a browser on pure JS.
Today was the official release of Linux Deploy 2.0, which includes many new developments that have been conducted over the past year. Not everything could be realized from what was conceived for one reason or another, it’s time to figure out what exactly has changed and how to live with it. For more details, see the project page.
Linux Deploy supports automatic installation and configuration of some of the most common desktop environments. Version LD 2.0 retains support for XTerm (full-screen terminal), LXDE, Xfce, and MATE environments. These environments are in almost all supported LD distributions, they are not very demanding on resources and can work without graphical acceleration. However, you can start other desktop environments manually. To do this, in the LD settings, select the “Other” desktop environment and execute the “Configure” command. After that, you need to connect to the container, install the packages of the desired environment of the desktop, and under the user (by default - android) edit the file ~/.xsession, prescribing the command to start the working environment.
Websocket.sh is a cross-platform implementation of WebSocket server on bash. Only busybox is required to work, instead of bash, you can use ash. Can be used in embedded systems.
Despite the fact that initially Linux Deploy (abbreviated LD) was conceived as an application for Android, over time there are other options for its application. With the Linux Deploy CLI, a number of new features have become available that open up new uses for the tool.
Linux Deploy CLI is a command-line application designed to automate the process of installing, configuring, and running GNU/Linux distributions inside a chroot container. The application can work both in ordinary desktop Linux-distributions and on mobile platforms based on the Linux kernel, provided that the necessary dependencies are observed (all dependencies can be collected statically). Applications from the Linux distribution run in a chroot environment, operate in parallel with the main system, and are comparable with it in terms of speed. Since the work of Linux Deploy is based on a system call to the Linux kernel, only Linux distributions can act as guest systems.
Preparing for the release of the next version of Linux Deploy, which will include many new interesting features. The main one’s are:
work with containers without superuser rights (based on proot), including architecture emulation without the need to support the binfmt_misc module at the core level;
modular architecture based on plug-in components;
updated application interface for Android;
built-in Android-application management interface via telnet and web interface;
extended CLI for managing containers from the command line;
CLI with support for various platforms based on the Linux kernel, not only Android;
repository of finished containers (container configurations and rootfs archives for them).